Dual Gramian analysis: Duality principle and unitary extension principle

نویسندگان

  • Zhitao Fan
  • Hui Ji
  • Zuowei Shen
چکیده

Abstract. Dual Gramian analysis is one of the fundamental tools developed in a series of papers [37, 40, 38, 39, 42] for studying frames. Using dual Gramian analysis, the frame operator can be represented as a family of matrices composed of the Fourier transforms of the generators of (generalized) shiftinvariant systems, which allows us to characterize most properties of frames and tight frames in terms of their generators. Such a characterization is applied in the above-mentioned papers to two widely used frame systems, namely Gabor and wavelet frame systems. Among many results, we mention here the discovery of the duality principle for Gabor frames [40] and the unitary extension principle for wavelet frames [38]. This paper aims at establishing the dual Gramian analysis for frames in a general Hilbert space and subsequently characterizing the frame properties of a given system using the dual Gramian matrix generated by its elements. Consequently, many interesting results can be obtained for frames in Hilbert spaces, e.g., estimates of the frame bounds in terms of the frame elements and the duality principle. Moreover, this new characterization provides new insights into the unitary extension principle in [38], e.g., the connection between the unitary extension principle and the duality principle in a weak sense. One application of such a connection is a simplification of the construction of multivariate tight wavelet frames from a given refinable mask. In contrast to the existing methods that require completing a unitary matrix with trigonometric polynomial entries from a given row, our method greatly simplifies the tight wavelet frame construction by converting it to a constant matrix completion problem. To illustrate its simplicity, the proposed construction scheme is used to construct a few examples of multivariate tight wavelet frames from box splines with certain desired properties, e.g., compact support, symmetry or anti-symmetry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality for Frames

The subject of this article is the duality principle, which, well beyond its stand at the heart of Gabor analysis, is a universal principle in frame theory that gives insight into many phenomena. Its fiber matrix formulation for Gabor systems is the driving principle behind seemingly different results. We show how the classical duality identities, operator representations and constructions for ...

متن کامل

A ne systems in L 2 ( IRd ) II : dual systemsAmos

The berization of aane systems via dual Gramian techniques, that was developed in previous papers of the authors, is applied here for the study of aane frames which have an aane dual system. Gramian techniques are also used to verify whether a dual pair of aane frames is a also a pair of bi-orthogonal Riesz bases. A general method for a painless derivation of a dual pair of aane frames from an ...

متن کامل

A Duality Principle for Groups

The duality principle for Gabor frames states that a Gabor sequence obtained by a time-frequency lattice is a frame for L(R ) if and only if the associated adjoint Gabor sequence is a Riesz sequence. We prove that this duality principle extends to any dual pairs of projective unitary representations of countable groups. We examine the existence problem of dual pairs and establish some connectio...

متن کامل

On Duality for Skew Field Extensions

In this paper a duality principle is formulated for statements about skew field extensions of finite (left or right) degree. A proof for this duality principle is given by constructing for every extension L/K of finite degree a dual extension LJK, . These dual extensions are constructed by embedding a given L/K in an inner Galois extension N/K. The Appendix shows that such an embedding can alwa...

متن کامل

Aane Systems in L 2 Ir D Ii:dual Systems Aane Systems in L 2 Ir D Ii:dual Systems

The berization of a ne systems via dual Gramian techniques, that was developed in previous papers of the authors, is applied here for the study of a ne frames which have an a ne dual system. Gramian techniques are also used to verify whether a dual pair of a ne frames is a also a pair of bi-orthogonal Riesz bases. A general method for a painless derivation of a dual pair of a ne frames from an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2016